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PREFACE

The purpose of this document is to describe blobtool - an image analysis application

package developed for the NASA/Langley Research Center's Image Processing Laboratory (IPL).

Detailed are the techniques and algorithms utilized by the package.

The document is divided into seven major sections with several appendices. Following this

preface, the first section introduces the field of image analysis and its relationship to the discipline

of image processing. Section two defines image processing terms used throughout the document.

Sections three, four, and five address, in turn, each of the image analysis techniques implemented

in the package: image segmentation, object recognition, and quantitative analysis. Finally,

section six describes the capabilities and features of the application package. A bibliography of

references and related subjects is provided. Appendix A provides supplemental formulas for the

discussions in section three. Results from the various image segmentation techniques are located

in Appendix B, and Appendix C provides examples of the object recognition algorithm

implemented and presents typical quantitative measurements used to describe images.
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1.0 Introduction

Image processing is a discipline that encompasses a class of techniques that are used to

enhance and analyze digital images. Image processing systems typically consist of three

components as shown in Figure 1-1. Image acquisition devices convert a continuous scene into

a numerical representation, an image, of that scene so that it may be processed by a digital

computer. Image processing provides the capability to enhance the image for a desired effect or

generate data about the image. Finally, the image display component provides a means to output

the resultant image so that it may be viewed.

Image processing applications can be utilized to perform a variety of tasks for researchers.

Many are used either to generate quantitative data about the objects within a given image (image

analysis) or to produce improved digital images through application of successive enhancement

techniques to that image (image enhancement). Image analysis techniques center on generating

quantitative measurements that describe the physical characteristics of the objects in an image.

These techniques require little or no user interaction. The most common difficulty encountered

when utilizing these techniques is the degradation of image data, usually introduced during the

image acquisition process. However, through utilization of image enhancement techniques,

which are primarily a series of"image in - image out" processes, the visual appearance of the image

data can be modified and improved. As examples, contrast enhancement, high-pass filtering, and

color enhancement techniques all involve the generation of new images to accentuate specific

features through manipulation of a pixel's intensity value. The application of these techniques

is often through subjective evaluation of the image data and is highly interactive.

IMAGE
ACQUISITION I IMAGE [ [ IMAGE

PROCESSING _ DISPLAY

Figure l-I. Components of an image processing system



In support of and to assist researchers in a wide range of disciplines, e.g., interferometry,

heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count

objects in an image and compute their geometric properties. The focus of this application has,

therefore, concentrated on a subset of image analysis techniques used for object recognition in

binary images. The three main phases are categorized as: image segmentation, object

recognition, and quantitative analysis.

Images typically consist of several shades of grey, but extraction of geometric properties

from a grey scale image is difficult. Grey scale images are often transformed, through image

segmentation techniques, into a binary format, producing images with a uniform background and

specifically defined object pixels. These binary images display silhouettes of objects so that the

geometry properties of the objects may be extracted. After the binary images have been

produced, object recognition techniques are employed to locate and distinguish a particular object

from the background or other objects present. The concept of neighborhood connectivity

determines how objects are located and influences the accuracy of their geometric properties.

Sequential labeling algorithms, border fill algorithms and line-adjacency fill algorithms are

examples of object recognition techniques currently utilized in this field. When the objects

located in a given image have been identified, processing can be applied to each one on an

individual basis. Some of the quantitative measurements that can be generated include the area,

perimeter, Euler number, compactness, and the radii of an object. In conjunction with the process

of calculating the relative position of the object and its orientation to its surroundings, moments

of the image are also determined.



2.0 Image Processing Terminology

In this document, the image, f, will refer to a two-dimensional array where M and N

denote the spatial dimensions of the image and the value off(m,n) at any point (m,n) is the

brighmess intensity function. The smallest unit that is addressable in an image is defined as a

picture element or pixel. The digital value of each pixel represents its intensity value. Both

spatial sampling and brightness quantization influence how a value is assigned to a

pixel. Spatial sampling determines the intervals at which a scene is "sampled" to acquire a good

approximation of that scene. The higher the sampling rate (resolution), the greater the detail.

Some of the more common image sizes consist of 512 x 512, 1024 x 1024, or 2048 x 2048

resolutions.

Brightness quantization imposes a limit on the number of discrete grey levels that a pixel

value may be assigned. As the number of bits associated with each pixel increases, a larger range

of grey levels may be used. For example, if the pixel only contained one bit for intensity values

then the image would be comprised of zeros and ones - a true binary image. It is more common,

however, to associate 8 bits per pixel, thereby allowing each pixel to contain one of up to 256

different values at any one time.

Conventions that will be utilized throughout this document include:

1) The coordinate system used will have its origin oriented so that the

upper left comer of the image is position (0,0).

2) Addressing of elements in the two-dimensional array will consist

of m and n locations; where m represents the scanline and n

represents the column position. The total scanlines and columns

permissible are represented as (M-I) and (N-l), respectively. The

largest grey level value is represented by (L-l), using 8-bits per pixel.

Thus an image has MN resolution with L= 28 grey levels, e.g., L=256

where 1 = 0,1 .... 255 gives the different intensity values.



3) Low digital intensities in an image represent low intensities observed in the

actual scene, with the intensity value of zero representing black and 255,

white.

4) Images illustrated in the discussions concerning thresholding techniques

are of M=N=8 resolution with L=23 of which eight different intensity

values will be used,/--0,1...7. Images illustrated in the discussions of

object recognition and object statistics are of M=N=16 resolution with l = 0

or l = 255. Images of M=N=512 resolution where l= 0, 1.... 255, were used to

test and verify many of the features discussed herein and are shown in Appendix B

and C.

5) Input pixel values are referred to asf(m,n) and their associated output

pixel values, after applying an image processing technique, are referred

to as g(m,n).

6) In discussing threshold techniques, t, represents a threshold value;

t' represents a possible candidate for the optimal threshold value utilized

in an algorithm; and t* represents the optimal threshold value selected

by the algorithm on the basis of a criterion function.

Figure 2-1 illustrates some of these conventions.
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pixel wilh an intensity of 128

f(x, y ) '_-_" I--P] "---"_ g(x,y)

b. Components ot an image processing lunction

Figure 2-1. Specifying pixels in an image



3.0 Image Segmentation

In order to describe the quantitative measurements, i.e., shape features or geometric

properties of objects in an image, it is often necessary to decompose the image into two specifically

defined classes - foreground and background. Image analysis techniques which support this

decomposition process include a wide variety of image segmentation schemes.

The purpose of segmentation is to divide the image into meaningful regions so that

descriptions of the regions can be computed. Segmentation schemes are typically categorized as

region-dependent or point-dependent techniques. The former technique utilizes the properties

that are exhibited in a defined region, or neighborhood, while the latter technique examines the

image on a pixel-by-pixel basis. Although there are several region-dependent approaches, this

report concentrates on various point-dependent techniques. Additional information of image

segmentation approaches can be found in Hall [3] or Gonzalez and Wintz [2]. A survey of image

segmentation techniques is described in Haralick and Shapiro [4].

The most commonly used point-dependent approach for image segmentation is

thresholding. To facilitate understanding of the thresholding methods, an image's grey level

distribution, or histogram, is discussed. Histograms reveal the frequency distribution of the

pixels within the image and are typically represented as a plot of the grey levels (the horizontal

axis) and the quantity of pixels at each specific grey level (the vertical axis). Although image

histograms do not depict any spatial information, i.e., several different images can have the same

grey level distribution, they do convey, at a glance, the pixel distribution of the

image. Histograms are generated by literally counting all the pixels in the image and

incrementing the count value associated with each intensity value. By this method a count array,

c[ ], of length equal to L would initially contain all zeros and as the image is "walked-through" left

to right, top to bottom, the count array is adjusted accordingly. Once the total count of each

intensity value is known, the relative frequency of the intensity values can be computed - that is,

the measure of the probability that a pixel in the image would have a specific intensity

value. Relative frequency is calculated utilizing the formula:



c [/]
P [I] -

MN

where l = 0,1..L-1 and MN is the total number of pixels in the image.

Generally, when computing thresholds, it is often useful to determine, early on, the

cumulative distribution of the image:

P[I] = ___p[i]
i=1

where P[0] =p[0] and l = 1,2...L- 1. This represents the percentage of pixels with intensity values

at or below the specific intensity, I.

Additionally, the maximum and minimum intensity values represented in the image are

located at the largest and smallest I values where p[/] > 0 and I = 0,1...L- 1.

Other single image statistics that can be inferred from an image's histogram include:

mean, the global brightness of the image; standard deviation, the amount of grey level variation

about the mean; mode, the grey level where the associated relative frequency is largest; median,

the smallest grey level where at least half the pixels in the image are defined; and entropy, i.e.,

the measure of the degree of randomness of the set of random variables [2]. Formulas utilizing

the histogram and describing the mean, standard deviation, and entropy are included in Appendix

A. To clarify, an example using an 8x8 resolution image with L=8 different grey levels ranging

from 0 to 7 is illustrated in Figure 3-1, on the following page. Its associated histogram and

statistics are also shown.
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Figure 3-1. Grey level histogram of an image

3.1 Image Segmentation - Thresholding

Thresholding is an effective technique for image segmentation. If an image exhibits a

histogram that consists of two peaks (a bimodal histogram) and the height associated with each

peak is proportioned to the area of the corresponding region in the image, then the selection of the

threshold (t) is simply chosen to separate the two peaks. This allows segmenting of the image into

two distinct classes - foreground and background [3]. Using Figure 3-1, a threshold equal to 3

could be selected as the grey level separating the two peaks. To produce a binary image using this

t value, the criterion function

g(m,n) =

0 if f (re,n) < t

1 if f (re,n) > t

(eq. 3.1)

is applied to every pixel inf. The objective of selecting a t value is for one class to contain, as

much as possible, all the pixel values related to the background, while the other contains pixel

values associated with the foreground - the objects of interest. In practice, it is often difficult to



ensure that an image exhibits a bimodal histogram. Other methods for determining an optimum

threshold value generally depend on a criterion function being used to define the property of the

classes into which the image will be divided.

Threshold techniques may be categorized as indicated in Figure 3-2. Multiple level

selection techniques, for the most part, are an extension of the bi-level techniques and are beyond

the scope of this document. Bi-level thresholding can be further broken down into global or local

thresholding techniques. Global techniques apply the optimally selected threshold to an entire

image, whereas local techniques divide the image into subimages and determine an optimal

threshold for each of the subimages. Using the local techniques, the processed image (i.e., the

thresholded image) evidences grey level discontinuities at the boundaries of these different

subimages. A smoothing technique would then be applied to the processed image to eliminate

these discontinuities.

Whether global or local approaches are utilized, the thresholding techniques applied to the

entire image or subimage are further classified as point-dependent or region-dependent methods.

Point-dependent methods determine a threshold value solely from the grey level of each pixel.

Region dependent methods determine t by utilizing some local property in the neighborhood of

each pixel [12]. For the most part, region-dependent methods rely on second order grey level

statistics e.g., a grey level co-occurrence matrix or a transformation of the grey level histogram.

Thresholding ]

I I
Multilevel Bilevelthreshold thresholding

l Locallechniques

I
Global

techniques

Figure 3-2. Thresholding categories

I
l Point -dependent

1
dependent



In the interest of providing researchers with the broadest possible capabilities to process

their data, the global, point-dependent thresholding techniques rather than the region-dependent

were examined. As stated previously, these techniques can be extended to local thresholding

methods by applying the same point-dependent method to each of the subimages. For example,

global techniques do not perform satisfactorily if the image's histogram is unimodal. The image,

therefore, can be subdivided and then global thresholding techniques applied to each of the

subimages.

3.2 Thresholding Using Global Techniques

The proper selection of the threshold is very important if the image is to have its objects

correctly recognized. Several techniques utilize the information contained in the image's

histogram, allowing a two-dimensional problem to be reduced to a one-dimensional problem by

treating the images as patterns of brightness. Thresholding methods may be applied to an image

on a subjective basis, such as allowing the researcher to manually enter t (hopefully after evaluating

the image's histogram) or through automatic selection. Automatic selection consists of computing

an image's histogram and determining the most suitable threshold value, t*, based on an

appropriate criterion function.

Investigations conducted for this application were directed at four specific automatic

thresholding methods: Otsu's, Entropy Analysis, Moment Preservation, and Minimum Error

thresholding methods. These methods were selected based on their overall applicability to the

research being conducted in the Image Processing Laboratory and their potential for expansion into

multilevel thresholding techniques.

3.2.10tsu's Thresholding Method

Several thresholding methods base their selection of t* on computing a possible candidate,

t' for every possible grey level. Often these techniques select a threshold that results in a function

that has been minimized or maximized. For example, Otsu's method [ 11] utilizes discriminant

analysis to select an optimum threshold value. Using the image's grey level distribution, the

criterion function selects the threshold, t*, such that the between class variance value is maximized.

9



Thisresultsin maximizingthemeasureof separabilitybetweenthetwo classesobtainedby

segmentingtheimageat point t'. The optimum threshold value is selected by maximizing:

o2 = C°oC°l (_tl - _o) 2
(eq. 3.2)

where:

o 0 is the area occupied by the background of the image after it has been thresholded;

co 1 is the area occupied by the foreground (objects) of the image after it has been

thresholded;

I_0 is the background's average brightness; and

l.t1 is the foreground's average brightness.

Stated in terms as discussed in Section 3.0, to0 is the summation of all the pixel value's relative

frequencies up to and including the currently selected threshold t' that constitutes the background;

o 1 is similarly defined, but for those pixel values that constitute the foreground. In essence, every

grey level, t' =0,1 .... L-1, is chosen and the one satisfying equation 3.2 is selected as the optimum

threshold value, t*. After the optimum threshold is selected, a binary image can be produced using

equation 3.1. Primary formulas that support this method are located in Appendix A. Using the

Figure in 3-1, the criterion function for every candidate threshold is illustrated in Figure 3-3a.

3.2.2 Entropy Analysis Thresholding Method

A criterion function based on the entropic features of information theory, as applied to

image processing, was suggested by Kapur, et al. [8]. As with Otsu (3.2.1), this method also

utilizes the global properties of image histograms. Using the image's grey level distribution, the

optimum threshold is selected by obtaining the maximum information between two class

distributions:

10



t*=max(H(A)+HfB)) for every t' (eq. 3.3)

" p[i] , "p[i]
where H(A, =-i___lff-[-_tnlff-[-_3

and H(B)= L( EiIII,n( Ei')- _-" 1-P[tj IZe[t'] "
i=t'+l

P[ t'] represent the cumulative frequency and p[[] is the relative frequency as described in Section

3.0. All grey levels, t', are selected as candidates for the optimum threshold value. For each

grey level selected, the image is split into two classes and the entropy of each class is determined.

The optimum threshold value is selected where the entropy between the classes is maximized.

4.

3.

2
t3

2.

Again, using Figure 3-1, the criterion function for every candidate threshold is illustrated

in Figure 3-3b.

/

I ' I • I I

H(A)+H(B)

i • ! • i • ! - , "- i , -

1 2 3 4 5 6 7

a. Criterion Function for Otsu's Method, r=3, max (0 2) b. Criterion Function for Enlropic Analysis Method r=3, max (H(A)+H(B))

Figure 3-3. Criterion functions
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3.2.3 Moment Preservation Thresholding Method

Another automatic threshold selection technique that utilizes a criterion function is based

on deterministic approaches to moment-preserving principles [13]. Essentially, the grey level

moments of an input image are computed from its histogram with the optimum t* being selected

in such a way that the moments of the output image, the thresholded image, are not

modified. Moments may be generated from an image's histogram through:

L-I

mi = Z p [1] li (eq. 3.4)

1=0

where p[/] is the relative frequency of a grey level and (L-l) is the largest grey level value.

This method selects t* using

1
1

- MN Z c [1]Po
/=0

(eq. 3.5)

where c[I] is the number of pixels at the grey level 1. For all candidates, t', the optimum threshold

value selected is the highest grey level which maps at least (100-P0)% of the pixels into the P0 class.

P0 is the class that consists of grey levels below the selected candidate. Appendix A contains

additional formulas for this approach.

3.2.4 Minimum Error Thresholding Method

In the last automatic threshold selection technique, a criterion function was employed based

on statistical decision theory. Again the image's histogram is used and an optimum threshold is

selected such that the average classification error rate is minimized. For each candidate

threshold, the criterion function reflects the amount of overlap between the background and

foreground classes. The optimum threshold is selected as the grey level that minimizes this

overlapped area. The criterion function is:

12



t* = minimize [1+2 [P1 (t') log o 1 (t') + P2 (t') log o 2 ( t')]

- 2 [P1 (t') log P1 (t') + P2 ( t')log P2 ( t')]]

where Pl[t'] and P2[t'] are the cumulative frequency of each class, and o I and oz is the

variance associated with each class, respectively. See Appendix A for supporting formulas.

3.3 Comparison of the Threshold Methods

In comparing the automatic threshold techniques discussed, the success of the technique

applied to an image is dependent on the objects that are to be extracted. For the best results, it

was evident that the grey level composition of the objects should occupy a range of grey levels that

are distinct from the background. There appeared to be a trade-off between maximizing or

minimizing the criteria functions and maintaining a reasonable ratio of black to white pixels. For

example, if the optimum threshold value, t*, is too high then information may be lost. Similarly, if

t* is too low, an increase in background clutter is observed.

Otsu's method and the moment-preserving method are best suited for images that reveal a

bimodal histogram. However, the optimum threshold value computed using Otsu's method

deteriorates as the two modes become further apart - as observed in broad, flat valleys. The

minimum error method is more appropriate in images that exhibit unequal variance between the

two classes or have very unequal class sizes. The minimum error method along with the entropic

method should be used if the intent is to preserve the detail in the image. The entropic method

is more suitable to use on an image that is multi-modal in nature. Finally, the entropic, moment-

preservation, and Otsu methods should be applied to an image to retain the uniformity and shape

of the image. Appendix B illustrates these methods on typical research data.

13



4.0 Object Recognition

After thresholding techniques have been applied to an image, several object recognition

schemes may be utilized to determine the existence of objects in an image. In this document, the

term object recognition implies object detection. Conceptually, this means as an algorithm scans

through an image, objects are detected (recognized) as being different from their surroundings. In

other words, objects are not recognized as specific identifiable items, but rather as an anomaly to

the background. Once an object has been detected and its boundaries defined, classification

techniques can be utilized to identify the object as a specific entity.

In order to detect objects, we must understand what defines an object, its boundaries, and

its neighbors. If these terms are not well defined, the accuracy of the geometric properties

associated with each object will be impaired.

In a binary image, an object is represented by pixels whose values are not the background

value and are contained by some sort of boundary. Conceptually, for binary images, there are two

types ofpixels that comprise an object. An interior pixel is surrounded such that all its immediate

neighbors have the same grey level value. Whereas, a pixel belonging to an object that has at

least one of its immediate neighbors as part of the background is defined to be a perimeter pixel.

Together, the perimeter pixels of an object comprise its boundary. This distinction is needed for

the determination of several geometric properties. In distinguishing between perimeter and interior

pixels, the term neighborhood is used to clarify how these pixels might be connected. Although

different authorities cite differing definitions of neighborhood connectedness, such as Horn [5]

who advocates a six connectedness neighborhood, this report will address the problems associated

with 8-connected and 4-connected neighbors. Figure 4-1 illustrates these types of connectedness.

If connectivity of the interior pixels is defined to be an 8-connected neighborhood, then the

perimeter pixels of the object must be connected using 4-connectedness. Similarly, if the interior

pixels of the object are 4-connected, then the boundary pixels must use 8-connectedness. This

limitation is necessary so that interior pixels are not connected to pixels outside the perimeter that

defines the object. Consider Figure 4-2, the dilemma of connectedness arises when trying to

14



classify pixel A as an interior pixel (using 4-connectedness for the object) or a perimeter pixel

(using 8-connectedness for the object). For purposes of consistency, the 4-connectedness

neighborhood definition is the basis for discussion herein relating to object detection and

quantitative measurement schemes.

a) 4-Connected

!iiiii!i!!!i_!!i_i!_iiiiiiiiii!iiiiiii_iiiiiiiiiiiiiil

b) 6-Connected

c) 8-Connected

Figure 4-1. Connectedness

I I
!!%ii:._.:=i;=il:=ii_i_[_i!_!:_i!i!i!iiiiii,Ri[!!i=iiiiiii_!io

I I

Figure 4-2. Connectivity dilemma
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4.1 Object Detection Techniques

Several techniques exist to detect objects in an image. Some techniques scan an image

from left to right assigning labels to each subject or assigning an intensity value that differs from

the foreground and background intensities. Other techniques assign labels to the objects by

following the connected border pixels of the objects. The various techniques that were examined

include: a pixel-by-pixel fill algorithm, a line-adjacency fill algorithm, and a sequential labeling

algorithm. The intent of all these algorithms is to "fill regions" defined as objects with a specific

fill value or a label so that object statistics can be computed. Usually, compilation of certain

statistical information may be accomplished as the object is being filled. This reduces what

would be a two pass process over the image into one pass. In describing each of the algorithms,

it is assumed that the scanning process (the "walk through" process) is from left to right and top to

bottom.

4.1.1 Single Pixel Algorithm

The Single Pixel Algorithm is a conceptually simple, but inefficient recursive algorithm

that may be employed to detect objects in a binary image [15]. Three intensity values are used in

this method, a background value (0 in the binary image), a foreground value (1 in the binary image)

and a fill value. As the algorithm "walks through" the image, each pixel is examined to determine

if it needs to be filled. If the pixel value is neither the background value nor the fill value then it

is recognized as an object or part of an object. The pixel value is changed to the fill value and the

process is repeated with the "next" pixel. The next pixel examined is actually determined by the

connectivity neighborhood scheme utilized. This method uses at least four recursive calls, one for

each immediate neighbor.

4.1.2 Line-Adjacency Fill Algorithm

An expansion of the single pixel approach is to view a group of pixels as a line segment.

This is the premise behind the Line-Adjacency Fill Algorithm (LAF) [15]. An object is then

depicted as a group of line segments connected vertically. Although this method is also recursive,

16



its determinantfor repeatingarecursivecall is basedon theconnectivityof the line segmentsthat

areverticallyconnected. Similarto thepixel-by-pixelobjectfill method,thisalgorithmusesthe

samethreeintensityvaluesto distinguishbetweenbackground,foreground,andafilled object.

Whenanewobjectisencountered,theinitial callto the LAF routineidentifiesthe"anchor"pixel

astheextremeleft pixel of the"highest" scanlinein theobject. Thealgorithmthenscansleft and

right to locatetheendpointsof subsequent line segments. Note that on the initial call in detecting

a new object, the scan left routine is not necessary - that is, it is presumed that the current object

pixel has a background pixel as its immediate left neighbor. This routine still needs to be called,

however, so that some geometric property variables are correctly tabulated. After each line

segment is identified, the line segment is filled. As the algorithm continues, the next iteration of

the LAF routine will locate the next group of horizontally connected pixels that are vertically

adjacent to the line segment just filled. The algorithm is recursively called in the downward

search direction. When the "lowest" line comprising the object is filled, the recursion process

terminates. As each of the levels in the recursive routine return, a search in the upward direction

ensues, again filling horizontal line segments that are vertically connected, thus ensuring that the

line segments around any hole contained in an object are filled correctly. Figure 4-3 demonstrates

the pattern direction of the algorithm.

P- F
r

--y- [-2-

1E)=
11 14

12

I3 F-

Figure 4-3. Pattern of the Line-adjacency fill algorithm
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4.1.3 Sequential Labeling Algorithm

The third method for object identification is the Sequential Labeling Algorithm (SLA)

where each pixel is assigned a label as it is encountered in the scanning process [15]. During the

scanning process, if the current pixel value is identified as an object, the connectivity of its

neighboring pixels is examine. A label is assigned to the pixel on the basis of the other object(s)

to which it is connected. Using 4-connectedness, if the current pixel has an object neighbor

immediately above it, that object label is used as the current pixel's label. If there is no such

neighbor, then the current pixel's immediate left neighbor is examined. If this neighbor contains

an object label, the current pixel's associated label is the same as that of its left neighbor. A

problem arises if both immediate neighbors (above and left) have different object labels, as shown

in Figure 4-4. Initially, there appears to be two separate objects, although further examination of

neighbors shows the two objects are connected through the current pixel. If this scenario exists,

then the current object's label is assigned from one of its neighbor's object labels and the two labels

are said to be equivalent. A new object label is issued whenever a transition from the background

to an object which appears to be isolated is detected.

1 1

1 1 lJ
1 1 1
1 1 1

] 1 1

222
222

2222]
222
222

1 1 9 [--
/

Figure 4-4. Sequenlial labeling algorithm conflict
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4.2 Comparison of the Object Recognition Algorithms

The algorithms examined were compared on the basis of the complexity of the algorithms,

speed of the compiled code, memory limitation of the devices on which the code would be

implemented, data structures and memory requirements utilized for algorithmic implementation,

and the suitability for realistic implementation in a research environment. Test cases, as well as

typical image data, i.e., the number of pixels comprising each object (referred to as object pixels)

and the number of objects in an image, were considered in evaluating the methods and determining

which method was most appropriate.

The single pixel algorithm, although conceptually simple, is highly recursive and

inefficient. The depth of the recursive calls can become exceedingly large when considering the

resolution of typical images and the size of objects in various images. The algorithm is also

inefficient in that every pixel is examined more than once, sometimes as many as four separate

times (based on 4-connectedness).

The LAF algorithm is more complex than the single pixel method, but still recursive in

nature. The algorithm executes faster because groups of pixels are examined before a recursive

call is issued - thus reducing the runtime memory requirements, i.e, the activation records needed

to support recursion. Using this method, with the exception of the end points of the line segment

and interior pixels adjacent to holes that are contained in the object, pixels belonging to a line

segment are never re-examined if they were already inspected in a previous invocation of the LAF

algorithm.

The SLA algorithm differs from the preceding algorithms in that it does not require

recursion to detect an object. Therefore, the memory requirements that are usually needed to

support recursion are not applicable to this method. This algorithm does, however, have other

limitations to consider. Theoretically, the total number of possible labels needed to "label" an

image is (-_-) ; an image exhibiting a checkerboard appearance. Typical images in the IPL

consist of 8-bit pixel data. The labeling "pool", therefore would normally be 256 distinct labels.

Of these, two are already used because the images are binary. This situation limits the researcher

to being able to process only data that was comprised of 254 or fewer objects. The "pool" of labels
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couldbeincreasedif theimagedatawasextendedto 16-bitor 32-bit pixel quantities,but the

memoryconstraintsinherentwith theworkstationrequireconsideration.If ascenarioasdescribed

in Figure4-4exists,theruntimeexecutionis impingeduponbecauseof themergingprocessthat

musttranspire.Thereis alsothepotentialthatpixelswill beclassifiedasperimeterpixelswhen

theyareactuallyinteriorpixels. Thesefalseperimeterpointswill decreasetheaccuracyof the

computedgeometricpropertiesof theobjects.

If therearearelatively low numberof objectpixelsper image,theefficiencyof the LAF

and SLA algorithmsis similar. As thenumberof objectpixelsincrease,theruntimeof theLAF

is lessefficientthantheSLA method.As thenumberof objectsperimageincreases,however,the

costof mergingobjectlabelsdeterioratesthisslight advantageof theSLA method. Basedon

thevariouspropertiesandtheperformanceof thesealgorithms,it wasdeterminedthattheLAF

wouldbe themostappropriatealgorithmto implementin theimageanalysisapplicationpackage.
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5.0 Quantitative Analysis

Once an object in an image has been identified, several geometric properties can be

computed. As stated earlier, the shape of the object is defined by the area it occupies, which in turn

is itself defined by the connectivity that is used. These properties are useful for identifying the

global characteristics of an object and for further shape analysis research.

The area of an object is one of the simplest measurements to obtain. It is calculated by

counting all the pixels that belong to the object. Similarly, the perimeter is computed through

counting the "perimeter" pixels - as defined in Section 4.0, object pixels adjacent to background

pixels. There are several ways in which the perimeter count may be computed. For example,

assume that we are computing the perimeter of an isolated pixel, i.e, an object containing exactly

one pixel. One way to compute the perimeter is to define its value on the basis of what constitutes

a pixel - here a pixel is the smallest entity definable in an image. Alternatively, a pixel may be

thought of as containing four perimeter edges. In our example, the isolated object could then have

a perimeter value of one or four. Finally, if the perimeter value is a measurement of distance around

an object and not just the pixel count and an object contains more than one pixel, it is possible that

some of the perimeter pixels will be diagonal to one another. In this instance, counting the pixel

values as in the first method would only generate an estimated result. James [7] recommends

counting two sets of perimeter values for an object, using 4-connected and 8-connected

neighborhoods. The square root of this product is then used as an approximation of the true

perimeter value. To eliminate the ambiguity surrounding the approximation, the perimeter is

calculated using the first method.

After the area and the perimeter of an object are determined the roundness or compactness

can be computed and is defined as the ratio:

(perimeter) 2

4 n (area)
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Note that a circle is valued with a compactness of 1 since
4_: (gr 2)

-1

The number of connected partitions as well as holes that exist in an object may also be calculated

from simple counting methods. The difference between these numbers is defined as the Euler

number which may be used to further classify an object. Using a 4-connected neighborhood to

locate objects, the number of connected partitions and the number of holes in an object can be

identified by using the following patterns, respectively:

The object in Figure 4-3 has an Euler number of 0 - that is, one connected partition minus one hole.

The object in Figure 4-4 has an Euler number of 1; the object contains no holes.

Many geometric properties can be represented as measurements of moments. In shape

analysis, moments assist in defining the direction and orientation of an object, and its displacement

within the image. By determining the first and second moments of an object we can compute the

center of area, the orientation and eccentricity of an object and its bounding rectangle. The center

of area of an object is located at position (_, K) such that:

- M-1 N-1-- 1 M 1 N-1 - 1

m - Z Zf(m,n) .m n - Z Zf(m,n).narea area
m=0 n=0 m=0 n=0

wheref(m,n) is zero, if background and 1, if an object.

Therefore, the center _ position is the sum of all the coordinates in the object divided by

the total area of the object. The center's _ position is similarly defined. The moments of an object
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maybeaffectedbytheshift orchangein scaleof theimage;therefore,momentsaremadeshift in-

variantby definingtheijth moment,Mij, as

M-1N-1

M,i-- Z Z
m=0n=0

(m - m) i (n - n )Jf(m, n )

The orientation, 0, of an object is the angle of axis of least moment of inertia and is given by:

1 -l_ 2Mll -]
0 = _ tan LM20 _ Mo2j

where Mll is the XY moment about the center, (_, K), M02 is the second moment about the

horizontal line through the center and M20 is the second moment about the vertical line through

the center of the object. Figure 5-1 illustrates the various moments.

rno2

rn_1

0= 46.08

-

V-

V
f-

J 1
V

V

Figure 5-1. Moments and orien{ation
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Thereareseveralmethodsto measuretheeccentricityof an object [ 1] [6]. The

eccentricity of an object is a measurement that determines the elongation of the object. One

method to compute eccentricity is given by:

(M20 _ M02) 2 + 4Mix

area

where M20, M02, and M 11 are as defined previously.

Another measure for eccentricity is the ratio of the minimum and maximum distances from

a perimeter pixel to the center of the object. For each perimeter pixel, the distance from it to the

center of area is calculated. From all these distances the maximum and minimum distance is

determined and their ratio in turn determines an eccentricity measurement. Figure 5-2 illustrates

this method.

Maximum

imu/

Figure 5-2. Minimum and maximum radii using 8-connectedness
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6.0 Package Implementation

The Image Processing Laboratory at the NASA Langley Research Center exists to provide

researchers with the interactive capability to produce, enhance, process, and analyze digital

images. The lab is an open shop, research facility supported by personnel who demonstrate system

capabilities, provide consultation support, and develop applications to increase the capabilities of

the lab or to support research projects. Currently, the lab consists of a network of Sun

Microsystem Family 3 color workstations which interface with several peripheral devices.

Although the workstations support many programming languages and windowing environments,

the language primarily utilized in the lab, and, hence, for this package was C. The package was

developed in the SunView window environment.

The primary purpose of this package was to provide image analysis capabilities which

would permit the computation of quantitative measurements derived from the analysis of a given

image. The package development was initially in support of research in the areas of structural

recognition and heavy rain effects on aerodynamics. The work performed in the development of

this package also provided the basis for another image processing application package supporting

research in the field of interferometry. Due to the open shop nature of the lab, however, a further

objective in implementing this package was to provide a means for researchers to operate and

manipulate their data with minimal support from the lab's personnel. To achieve this goal, a user-

friendly graphical user interface was designed and implemented.

In implementing the various image segmentation and object recognition techniques, trade-

offs involving accuracy, speed, and memory limitations were evaluated. For example, the

accuracy of the object recognition techniques were influenced by the connectivity utilized to

distinguish an object. The efficiency of the various thresholding techniques was improved upon

through the employment of the minimum and maximum grey levels in an image as indices for the

algorithm, rather than forcing the algorithm to search the entire histogram array structure. As

stated earlier (Section 4.1), the object recognition and object analysis phases could and, in this case,

have been combined. Conceptually, the two techniques each require a pass through the image, one

pass to identify the objects (either through labeling or filling techniques) and another pass to collect

statistical information about each object in the image. These two techniques were combined to
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improvetheefficiencyof thecode. Thememorylimitationsof theworkstationimpingeduponthe

implementationof theobjectrecognitiontechniqueandalsohadanegativeimpacton theuseof

theSunViewdatastructures. Therecursivenatureof theLAF algorithmrequiredthatthelength

of eachactivationrecordassociatedwith agivencall beminimized. This wasaccomplished

throughthedefinitionandemploymentof globalvariables,limiting theparameterspassedinto

eachof theinvocations.

A representationof theimageanalysispackageis shownin Figure6-1.As illustrated,the

packageutilizestheSunViewwindowenvironment. It generatesalargebasewindow that

containsapanelregionandtwo canvasregions. Thepanelregionallowstheresearcherto select

itemsthroughamouse. Eachitemrepresentsanoptionto bemodifiedor a functionto be

performed. Theitemsareselectedthroughbuttonandslidermanipulationor throughtextentry.

Thepanelregionalsodisplaysdiagnosticandinformativemessagesto assisttheresearcher.The

two canvasregionsarecapableof simultaneouslydisplayinganimagethrougha512x 512

resolutionviewport. Scrollbarsareattachedto eachof thecanvasviewports,allowingfor the

viewingof 512x 512resolutionsubsectionsof largerimages.

Otheroptions incorporatedinto thispackageprovidebasicI/O capabilities,colortable

manipulationsandhelpfeatures.Thecapabilitytodisplayanimagestoredonadisk file in oneof

thecanvasregionsor storeaprocessedimagefrom thecanvasregionto diskis supportedthrough

the"Load Image>>" and"SaveImage>>" options. Bothof theseoptionsconcatenatethenames

enteredon the"Directory:" and" File:" lines togetherto form thecompletepathnameof thefile

to bemanipulated. Bothoptionsalsoutilizethe"walking menu"mechanismof theSunView

environmentto allow theuserto specifyfromor to whichcanvasregionimagedatawill bestored

or displayed. If the intentis to writean imageto adiskfile andthatfile alreadyexists,the

researcherispromptedfor verificationof anoverwrite. Toallow imagesprocessedin thispackage

to beutilizedbyotherpackages,imagefilesarestoredonharddisk in thestandardSunrasterfile

format. The"List Directory" option providesthecapabilityto displayadirectoryfrom within

thepackage. Thedirectorydisplayedis thenameenteredonthe"Directory:" lineof thepanel

region. Thedirectory'scontentsaredisplayedin apop-upSunwindowandcanbescrolled. The

"Histogram"optiongeneratesa graphicaldisplayof thehistogramfor the imagelocatedin either

the left or right canvasregions. Thehistogram,alongwith othersingleimagestatistics(see
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Section3.0)aredisplayedin a pop-upSunwindow. The"ViewColor" optionallowsseveral

differentcolor palettesto beappliedto theimagesthataredisplayedin thecanvasregions. The

actual pixel data of each image is not modified, however, red, green, and blue intensity values

associated with each pixel are changed. This allows the researcher to view his data through color

table enhancement methods. When this option is "exited" the original color palettes associated

with each canvas are reinstated. Additionally, specific color palettes may be applied to or stored

from the canvas regions through the "Load LUT" and "Save LUT" options. The "Help" option

is another scrollable, pop-up Sun Window which contains a description of the overall functionality

of the image analysis package, describing the purpose of each of the panel items and providing

suggestions for applying the various thresholding techniques.

To obtain the geometric properties of objects it is first necessary to produce a binary image.

This is accomplished through use of the "Threshold >>" option. The researcher may select any

of the automatic selection methods as discussed in Section 3 or manually enter a specific threshold

value. The image located in the left canvas is taken as input, processed using equation 3-1, and

then displayed in the right canvas. To improve the visual display on the right canvas following

thresholding, the pixel values used in Equation 3-1 are 0 and 255. The "Threshold >> User

Supplied" option allows for the selection of one or two threshold values through slider bx or cursor

manipulation. If two threshold values are entered, equation 3-1 is slightly modified, that is, pixel

intensity values below the first threshold and above the second threshold are set to 0; otherwise the

values are set to 255. The "Threshold >> Automatic" option implements the algorithms as

defined in Section 3.2. By default, the Minimum Error, Entropic Analysis, and Otsu thresholding

methods use the range between the minimum and maximum intensity values of the image's

histogram. The researcher may elect to restrict this range by utilizing the clip feature associated

with these options.

Prior to invoking the object detection option the researcher may elect not to have some of

the geometric properties reported. This is provided by the "Object Statistics >> Select Stats"

option and is illustrated in Figure 6-2. After the geometric properties have been selected, the

object detection algorithm is invoked through the "Object Statistics >> Generate Stats"

option. The technique implemented is the LAF algorithm as described in Section 4.1.2 and

utilizes 4-, 6-, or 8-connectedness neighborhoods. As each object is detected, several partial sums
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for calculatingthegeometricpropertiesof animagearecompiled. By default,thegeometric

propertiesselectedaredisplayedin apop-upSunwindow. Within thispackage,theresearcher

hasthecapabilityto savethestatisticscompiledin apermanentdisk file or sendtheinformationto

aprinter.

The"PaintPixels>>" optionallowstheresearcher,throughuseof abitmapeditor,to edit

theimagelocatedin theright canvasregion. Pixelsmaybewrittenin eitherblack,intensityvalue

0, or white,intensityvalue255.

Finally, the"Quit" optionexits theapplicationpackage. Figure6-3 is includedto

illustrateatypical imagein the left canvasandits thresholdedbinaryimagein theright canvas.
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7.0 CONCLUSION

This application was to provide various tools and techniques that support the analysis of

images. In order to achieve this goal, several image processing and computer vision techniques

were examined, evaluated, and, if determined to be feasible, implemented. The package reduces

researchers' dependence of staff consulting availability and provides access to various image

processing tools, such as, thresholding, object recognition, and object analysis. These features

are tied together in an easy to learn and understand, mouse-driven, graphically represented

environment.
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APPENDIX A

APPENDIX A contains additional formulas.

• Single Image Statistics ........................................................................................ A-1

• Otsu's Thresholding Method ............................................................................. A-1

• Moment Preserving Thresholding Method ...................................................... A-2

• Minimum Error Thresholding Method ............................................................ A-2





SingleImage Statistics:
L-1

mean= _ lp[l]
/=0

APPENDIX A

standard deviation =

entropy = -

-ft_=° (I- mean) 2p [/]

L-1

p [I] lg (p [11 )
/=0

where p[l ] is the relative frequency array and I=0,1...L- 1. L is the number of grey levels in the

image.

Otsu's Thresholding Method:

0 2 = 030031 (_1- _2 ) 2

O2(t ') =
[I.tT03 (t') - kt (t') ] 2

CO(f) [1-03(t') ]

where t' is the current candidate threshold value and the optimal threshold, t*, is defined as

o2(t *) = maximized (o 2 (t'))

t' L

t' _._ ip[i] ___ ip[i]

03o = 03(t') = iEP[i]=1 J.t0 _ i=1030 _1 -" i=t'+1031

L

031---- [1-03(t')] = E p[i]
i=t'+l

A-1



Moment Preserving Thresholding Method:

The first three moments of the output image, g are:

1

m' --i _.,p[j] (z[kl) i i=1,2,3

.j -- o

where p[]] is the relative frequency of the class and z[k] is the number of pixels with the

grey level k.

poz ° + plz ° = m o

poZlo +plzll = m 1

poz_+plz_ = m 2

poz30 + Pl z3 = m 3

The linear equations are obtained through

Corn 0 +clm 1 = -m 2

Corn l + clm 2 = -m 3

Minimum Error Thresholding Method:

l'

Pi (t') = Z p [l] where i=O,1 and p[/] is the relative frequency of the

t = o grey level I.

_ti ( t')

I'

y_p[lll
/=0

Pi(t')
where i=0,1 and each _t represents the mean of each class

A-2



(I2i (t')

t I

/=0

(l- g_(r))2p [l]

Pi(t')

where i=0, 1 and each _ represents

the variance of each class

A-3
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APPENDIX B

APPENDIX B contains test image data that illustrates image segmentation using various

thresholding techniques.

rain.img - an example used in heavy rain effects on aerodynamics
research ............................................................................................................... B- 1

• fringes.img - an example used in interferometry research ............................. B-3

• booth.img - an example used in structure recognition research .................... B-5
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APPENDIX C

APPENDIX C contains test image data that illustrates the LAF object recognition technique

and the various quantitative measurements that might be generated. The files with exten-

sions ".txt" and ".img" are the input image files, and their respective results are stored in the
".stats" files.

• obj4.txt ................................................................................................................. C-1

• obj4.stats .................................................................................. . ........................... C-2

• booth.img ............................................................................................................. C-3

• booth.stats ............................................................................................................ C-4

• rain.img ................................................................................................................ C-11

• rain.stats .............................................................................................................. C-12
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Image filename:

Threshold:

Neighborhood:

obj4.img

Threshold from Single method is 128

4 connectedness

object number = 1

2 12 2 13 3 I0 3 Ii 3 12 3 13 4 9 4 i0

4 ii 4 12 5 8 5 9 5 I0 5 ii 6 7 6 8

6 9 6 i0 7 3 7 4 7 5 7 6 7 7 7 8

7 9 8 2 8 3 8 4 8 5 8 6 8 7 8 8

8 9 9 1 9 2 9 3 9 4 9 5 9 6 9 7

9 8 9 9 I0 1 I0 2 i0 3 Ii 1 ii 2 ii 3

12 2 12 3 13 2 13 3 13 4 13 5 13 6 13 7

14 2 14 3 14 4 14 5 14 6 12 6 12 7 Ii 6

ii 7 i0 5 I0 6 I0 7 I0 8 6 4

****Stats for object I:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Eccentricity:

2nd Moment about vertical line through center:

2nd Moment about horzntl line through center:

XY moment about the center:

ist Moment about x-axis:

ist Moment about y-axis:

2nd Moment about x-axis:

2nd Moment about y-axis:

XY Moment about the origin:

Writing perimeter points:

70

42

0

6 23

8 53

1 55

9 41

6 09

2 01

46.08

-0.42

10.23

10.79

-7.39

597

436

5847

3432

3201

2 12 2 13 3 i0 3 ii 3 13 4 9 4 12 5 8

5 Ii 6 7 6 i0 7 3 7 5 7 6 7 9 8 2

8 9 9 1 9 4 9 9 10 1 i0 3 ii 1 ii 3

12 2 12 3 13 2 13 4 13 5 13 7 14 2 14 3

14 4 14 5 14 6 12 6 12 7 ii 6 II 7 i0 5

I0 8 6 4
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Trilevel Thresholding, t* = 69 and 113

booth.img

O_iG_N._L PAGE' IS

OF _O_r q_JALJ'rY

C-3



Image filename: booth.img

Threshold: Thresholds from Trilevel method are 69 and 113

Neighborhood: 8 connectedness

****Stats for object I:

Area: 1442

Perimeter: 311

Euler: -3

Center X: 365.64

Center Y: 77.82

Minimum Radius: 10.28

Maximum Radius: 48.58

Maximum Radius / Minimum Radius: 4.73

Compactness: 5.34

Orientation: 34.22

Eccentricity: 5.84

****Stats for object 2:

Area: 1

Perimeter: 1

Euler: 1

Center X: 404.00

Center Y: 55.00

Minimum Radius: 0.00

Maximum Radius: 0.00

Maximum Radius / Minimum Radius: 0.00

Compactness: 0.08

Orientation: -999.00

Eccentricity: 0.00

****Stats for object 3:

Area: 1

Perimeter: 1

Euler: 1

Center X: 404.00

Center Y: 67.00

Minimum Radius: 0.00

MaXimum Radius: 0.00

Maximum Radius / Minimum Radius: 0.00

Compactness: 0.08

Orientation: -999.00

Eccentricity: 0.00

****Stats for object 4:

Area: 4

Perimeter: 4

Euler: 1

C_



Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius

Compactness:

Orientation:

Eccentricity:

/ Minimum Radius:

****Stats for object 5:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius

Compactness:

Orientation:

Eccentricity:

/ Minimum Radius:

****Stats for object 6:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius

Compactness:

Orientation:

Eccentricity:

/ Minimum Radius:

****Stats for object 7:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Eccentricity:

393.50

71.75

O.56

1.68

3.00

0.32

162.39

0.66

1

1

1

347.00

75.00

0.00

0.00

0.00

0.08

-999.00

0.00

1

1

1

342.00

I01.00

0.00

0.00

0.00

0.08

-999.00

0.00

1941

548

-18

267.62

302.35

2.40

37.91

15.77

12.31

128.90

0.25
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****Stats for object 8:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Eccentricity:

****Stats for object 9:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Eccentricity:

****Stats for object i0:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Eccentricity:

****Stats for object ii:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

C-6

1

1

I

239.00

292.00

0.00

0.00

0.00

0.08

-999.00

0.00

1

1

1

237.00

306.00

0.00

0.00

0.00

0.08

-999.00

0.00

1

1

1

236.00

308.00

0.00

0.00

0.00

0.08

-999.00

0.00

5

5

1

236.40

312.00

0.40

1.40

3.50

0.40

-0.00



Eccentricity:
****Stats for object 12:

Area:
Perimeter:
Euler:
Center X:
Center Y:
Minimum Radius:

Maximum Radius:

Maximum Radius

Compactness:

Orientation:

Eccentricity:

/ Minimum Radius:

****Stats for object 13:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius

Compactness:

Orientation:

Eccentricity:

/ Minimum Radius:

****Stats for object 14:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius

Compactness:

Orientation:

Eccentricity:

/ Minimum Radius:

****Stats for object 15:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius

Compactness:

Orientation:

Eccentricity:

/ Minimum Radius:

C-7

0.01

1

1

1

271.00

314.00

0.O0

0.00

0.00

0.08

-999.00

0.00

2

2

1

268.00

318.50

0.50

0.50

1.00

0.16

90.00

0.03

4

4

1

243.25

320.25

0.35

1.27

3.61

0.32

161.57

0.25

1

1

1

265.00

320.00

0.00

0.00

0.00

0.08

-999.00

0.00



****Stats for object 16:

Area:
Perimeter:
Euler:
Center X:
Center Y:
MinimumRadius:
MaximumRadius:
MaximumRadius / Minimum Radius:

Compactness:

Orientation:

Eccentricity:

****Stats for object 17:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius

Compactness:

Orientation:

Eccentricity:

/ Minimum Radius:

****Stats for object 18:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Eccentricity:

****Stats for object 19:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Eccentricity:

C-8

5

5

1

264.20

323.20

0.28

1.70

6.00

0.40

135.03

0.29

1

1

1

244.00

324.00

0.00

0.00

0.00

0.08

-999.00

0.00

1

1

1

242.00

327.00

0.00

0.00

0.00

0.08

-999.00

0.00

3

3

1

255.00

328.00

0.00

1.00

0.00

0.24

-0.00

0.15



****Stats for object 20:

Area:
Perimeter:
Euler:
Center X:
Center Y:
MinimumRadius:
MaximumRadius:
MaximumRadius
Compactness:
Orientation:
Eccentricity:

/ Minimum Radius:

****Stats for object 21:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius

Compactness:

Orientation:

Eccentricity:

/ Minimum Radius:

****Stats for object 22:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius

Compactness:

Orientation:

Eccentricity:

/ Minimum Radius:

****Stats for object 23:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius

Compactness:

Orientation:

Eccentricity:

/ Minimum Radius:

C-9

i

i

I

259.00

331.00

0.00

0.00

0.00

0.08

-999.00

0.00

2

2

1

262.50

337.00

0.50

0.50

1.00

0.16

-0.00

0.03

i

i

I

264.00

339.00

0.00

0.00

0.00

0.08

-999.00

0.00

3

3

1

267.00

339.00

0.00

1.00

0.00

0.24

-0.00

0.15



****Stats for object 24:

Area:
Perimeter:
Euler:
Center X:
Center Y:
MinimumRadius:
MaximumRadius:
MaximumRadius / Minimum Radius:

Compactness:

Orientation:

Eccentricity:

****Stats for object 25:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Eccentricity:

1

1

1

259.00

340.00

0.00

0.00

0.00

0.08

-999.00

0.00

3

3

1

262.33

340.67

0.47

0.75

1.58

0.24

134.23

0.15

C-IO



Single Thresholding, t* = 84

rain.img

ORIGINAL PAGE IS
OF POOR QUAL/TY
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Image filename: rain.img

Threshold: Threshold from Single method is 84

Neighborhood: 8 connectedness

****Stats for object i:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

20 313

****Stats for object 2:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

59 149 60 148 60 149

****Stats for object 3:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

80 89

60 150 61

i

I

I

313.00

20.00

0.00

0.00

0.00

0.08

-999.00

5

5

1

149.00

60.00

0.00

1.00

0.00

0.40

-999.00

149

1

1

1

89.00

80.00

0.00

0.00

0.00

0.08

-999.00

C-12



****Stats for object 4:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

122 352

****Stats for object 5:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

126 67 126 68 127

128 69 129 65 129

131 67 131 68

65 127

69 130

****Stats for object 6:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

142 198

****Stats for object 7:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

66 127

65 130

1

1

1

352.00

122.00

0.00

0.00

0.00

0.08

-999.00

25

18

1

67.04

128.60

1.60

2.77

1.73

1.03

79.08

67 127

66 130

1

1

1

198.00

142.00

0.00

0.00

0.00

0.08

-999.00

1

1

1

311.00

154.00

0.00

68 127

68 130

69 128

69 131

65

66

C-13



Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

154 311

0.00

0.00

0.08

-999.00

****Stats for object 8:

Area: 1

Perimeter: 1

Euler: 1

Center X: 147.00

Center Y: 172.00

Minimum Radius: 0.00

Maximum Radius: 0.00

Maximum Radius / Minimum Radius: 0.00

Compactness: 0.08

Orientation: -999.00

Writing perimeter points:

172 147

****Stats for object 9:

Area: 26

Perimeter: 20

Euler: 1

Center X: 205.12

Center Y: 178.08

Minimum Radius: 0.93

Maximum Radius: 3.47

Maximum Radius / Minimum Radius: 3.73

Compactness: 1.22

Orientation: 156.63

Writing perimeter points:

176 203 176 204 176 205 177 202 177 203 177 205 177 206 177 207

178 202 178 203 178 207 178 208 179 203 179 204 179 205 179 208

180 205 180 206 180 207 180 208

****Stats for object i0:

Area: 2

Perimeter: 2

Euler: 1

Center X: 326.00

Center Y: 179.50

Minimum Radius: 0.50

Maximum Radius: 0.50

Maximum Radius / Minimum Radius: 1.00

Compactness: 0.16

Orientation: 90.00

Writing perimeter points:

179 326 180 326

C-14



****Stats for object ii:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

185 211

****Stats for object 12:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

195 54 195 55 196 54

****Stats for object 13:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

216 230

****Stats for object 14:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

196 55

1

1

1

211.00

185.00

0.00

0.00

0.00

0.08

-999.00

4

4

1

54.50

195.50

0.71

0.71

1.00

0.32

-999.00

1

1

1

230.00

216.00

0.00

0.00

0.00

0.08

-999.00

3

3

1

151.33

217.67

0.47

0.75

C-15



Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

217 151 218 151 218 15_

1.58

0.24

135.24

****Stats for object 15:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

230 130 230 131 231 130

3

3

1

130.33

230.33

0.47

0.75

1.58

0.24

45.07

****Stats for object 16:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

239 296 239 297

2

2

1

296.50

239.00

0.50

0.50

1.00

0.16

-0.00

****Stats for object 17:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

5

5

1

118.60

242.20

0.45

1.26

2.83

0.40

71.63

241 119 242 118 242 119 243 118 243 119

C-16



****Stats for object 18:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius_

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

247 95 248 94 248 95 248

****Stats for object 19:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

251 401

****Stats for object 20:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

264 195

****Stats for object 21:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

6

6

1

95.17

248.17

0.24

1.18

5.00

O.48

135.16

96 249 95 249 96

1

1

1

401.00

251.00

0.00

0.00

0.00

0.08

-999.00

1

1

1

195.00

264.00

0.00

0.00

0.00

0.08

-999.00

72

34

1

267.78

271.39

3.43

4.94
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Maximum Radius / Minimum Radius:

Compactness:

Orientation:

1.44

1.28

75.95

Writing perimeter points:

267 266 267 267 267 268 267 269 268 265 268 266 268 269 268 270

268 271 269 264 269 265 269 271 270 264 270 271 270 272 271 264

271 272 272 264 272 272 273 264 273 271 273 272 274 264 274 265

274 270 274 271 275 265 275 266 275 268 275 269 275 270 276 266

276 267 276 268

****Stats for object 22:

Area: 1

Perimeter: 1

Euler: 1

Center X: 93.00

Center Y: 272.00

Minimum Radius: 0.00

Maximum Radius: 0.00

Maximum Radius / Minimum Radius: 0.00

Compactness: 0.08

Orientation: -999.00

Writing perimeter points:

272 93

****Stats for object 23:

Area: 1

Perimeter: 1

Euler: 1

Center X: 212.00

Center Y: 272.00

Minimum Radius: 0.00

Maximum Radius: 0.00

Maximum Radius / Minimum Radius: 0.00

Compactness: 0.08

Orientation: -999.00

Writing perimeter points:

272 212

****Stats for object 24:

Area: 22

Perimeter: 17

Euler: 1

Center X: 241.77

Center Y: 308.73

Minimum Radius: 1.26

Maximum Radius: 2.83

Maximum Radius / Minimum Radius: 2.25

Compactness: 1.05

Orientation: 107.49
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Writing perimeter points:

306 241 307 240 307 241 307 242 307 243 308 240 308 243 308 244

309 240 309 243 309 244 310 240 310 241 310 243 311 241 311 242

311 243

****Stats for object 25:

Area: 1

Perimeter: 1

Euler: 1

Center X: 169.00

Center Y: 308.00

Minimum Radius: 0.00

Maximum Radius: 0.00

Maximum Radius / Minimum Radius: 0.00

Compactness: 0.08

Orientation: -999.00

Writing perimeter points:

308 169

****Stats for object 26:

Area: 8

Perimeter: 8

Euler: 1

Center X: 469.12

Center Y: 312.88

Minimum Radius: 0.18

Maximum Radius: 1.43

Maximum Radius / Minimum Radius: 8.06

Compactness: 0.64

Orientation: -45.00

Writing perimeter points:

312 468 312 469 312 470 313 468 313 469 313 470 314 469 314 470

****Stats for object 27:

Area: ii

Perimeter: ii

Euler: 1

Center X: 280.64

Center Y: 317.45

Minimum Radius: 0.58

Maximum Radius: 1.70

Maximum Radius / Minimum Radius: 2.92

Compactness: 0.88

Orientation: 108.23

Writing perimeter points:

316 280 316 281 317 279 317 280 317 281 317 282 318 280 318 281

318 282 319 280 319 281
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****Stats for object 28:

Area: 95

Perimeter: 42

Euler: 1

Center X: 423.59

Center Y: 329.00

Minimum Radius: 2.59

Maximum Radius: 7.18

Maximum Radius / Minimum Radius: 2.77

Compactness: 1.48

Orientation: 86.53

Writing perimeter points:

322 422 322 423 322 424 323 421 323 422 323 424 323 425 323 426

324 421 324 426 325 421 325 426 325 427 326 421 326 427 327 421

327 427 328 421 328 427 329 421 329 427 330 420 330 421 330 427

331 420 331 427 332 420 332 426 332 427 333 420 333 421 333 426

334 421 334 425 334 426 335 421 335 422 335 424 335 425 336 422

336 423 336 424

****Stats for object 29:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

347 438 347 439 348 437 348 438

4

4

1

438.00

347.50

0.50

1.12

2.24

0.32

31.72

****Stats for object 30:

Area: 89

Perimeter: 37

Euler: 1

Center X: 178.49

Center Y: 379.56

Minimum Radius: 4.25

Maximum Radius: 5.46

Maximum Radius / Minimum Radius: 1.29

Compactness: 1.22

Orientation: 84.80

Writing perimeter points:

375 176 375 177 375 178 375 179 375 180 375 181 376 175 376 176

376 181 376 182 377 174 377 175 377 182 377 183 378 174 378 183

379 174 379 183 380 174 380 183 381 174 381 183 382 174 382 175

382 182 382 183 383 175 383 176 383 181 383 182 384 176 384 177

384 178 384 179 384 180 384 181 385 178
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****Stats for object 31:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

393 113 393 114 394 113 394 114

4

4

1

113.50

393.50

0.71

0.71

1.00

0.32

-999.00

****Stats for object 32:

Area:

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

403 65 404 64 404 65 405 65

4

4

1

64.75

404.00

0.25

1.03

4.12

0.32

90.00

****Stats for object 33:

Area: 24

Perimeter: 18

Euler: 1

Center X: 313.12

Center Y: 438.67

Minimum Radius: 1.31

Maximum Radius: 2.81

Maximum Radius / Minimum Radius: 2.15

Compactness: 1.07

Orientation: 70.68

Writing perimeter points:

436 313 436 314 437 312 437 313 437 314 437 315 438 311 438 312

438 315 439 311 439 315 440 311 440 312 440 314 440 315 441 312

441 313 441 314

****Stats for object 34:

Area: 3

Perimeter: 3

Euler: 1

Center X: 168.33

Center Y: 454.67
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Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

454 168 455 168 455 169

****Stats for object 35:

Area :

Perimeter:

Euler:

Center X:

Center Y:

Minimum Radius:

Maximum Radius:

Maximum Radius / Minimum Radius:

Compactness:

Orientation:

Writing perimeter points:

483 304 483 305 484 305

0.47

0.75

1.58

0.24

134.52

3

3

1

304.67

483.33

0.47

0.75

1.58

0.24

136.06
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